

Mark Scheme (Results) March 2008

GCSE

360Science

GCSE Additional Science C2 (5018H/1H)

USING THE MARK SCHEME

- 1. This mark scheme gives you;
- * an idea of the type of response expected
- * how individual marks are to be awarded
- * the total mark for each question
- * examples of responses that should not receive credit.
- 2. ; separates points for the award of each mark.
- 3. / means that the responses are alternatives and either answer should receive full credit.
- 4. () means that a phrase/word is not essential for the award of the mark but helps the examiner to get the sense of the expected answer.
- 5. Phrases/words in **bold** indicate that the meaning of the phrase/word is **essential** to the answer.
- 6. OWTTE (or words to that effect) and eq (equivalent) indicate that valid alternative answers (which have not been specified) are acceptable.
- 7. 'Ignore' means that this answer is not worth a mark but does not negate an additional correct response.
- 8. 'Reject' means that the answer is wrong and negates any additional correct response for that specific mark.
- 9. ORA (or reverse argument) indicates that the complete reverse is also valid for the award of marks.
- 10. ecf (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

MARKING

- 1. Suggestion/explanation questions should be marked correct even when the suggestion is contained within the explanation.
- 2. **Do not** award marks for repetition of the stem of the question.
- 3. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct scientific context.

AMPLIFICATION

- 1. In calculations, full credit must be given for a <u>bald</u>, correct answer. If a numerical answer is incorrect, look at the working and award marks according to the mark scheme.
- 2. Consequential marking should be used in calculations. This is where a candidate's working is correct but is based upon a previous error. When consequential marks have been awarded write "ecf" next to the ticks.
- 3. If candidates use the mole in calculations they must be awarded full marks for a correct answer even though the term may not be on the syllabus at their level.
- 4. If candidates use chemical formulae instead of chemical names, credit can only be given if the formulae are correct.

Question	Answer	Mark
Number		
1 (a)	Any two from:	
	 non-biodegradable; 	
	2. does not rot;	
	3. therefore persists;	
	4. uses up space;	
	5. toxic decomposition products;	(2)
	6. toxic substances leached out;	(2)
	7. animals can be stuck in plastic;	
	8. any other relevant point;	

Question	Answer	Mark
Number		
1 (b)	Any two from:	
	1. harder to make /	
	shortage of any crude oil product;	
	need new source of crude oil product;	
	3. prices rise;	(2)
	4. any other suitable point;	(2)

Question	Answer	Mark
Number		
2 (a) (i)	2,8,7;	(1)

Question Number	Answer	Mark
2 (a) (ii)	both same no/seven outer electrons /	(1)
	each short of one outer electron;	

Answer	Mark
Any two from:	
1. full outer shell/8 electrons in outer shell;	
bonds;	
does not gain/ lose electrons;	(2)
	Any two from: 1. full outer shell/8 electrons in outer shell; 2. much energy needed to use electrons to form bonds;

Question	Answer	Mark
Number		
2 (c) (i)	52 / 28 + 24;	(1)

Question Number	Answer	Mark
2 (c) (ii)	chromium/ Cr;	(1)

Question Number	Answer	Mark
3 (a)	2 HCI;	
	s, aq, g, I [Allow 1 error];	(2)
	[Allow S, AQ, G, L]	

Question Number	Answer	Mark
3 (b)	Any three from: 1. particles gain energy; 2. move faster / more; 3. more collisions; 4. have more (activation) energy; 5. which is energy required for reaction; 6. greater proportion of collisions successful;	(3)

Question	Answer	Mark
Number		
3 (c)	measure loss in mass/ volume gas produced / use a datalogger / use balance / use gas syringe / use upward measuring cylinder / time reaction / use stopwatch / $\frac{\text{quantity}}{\text{time}};$	(1)

Question	Answer	Mark
Number		
4 (a)	1 correct shared pair; rest of molecule correct (with or without inner electrons);	(2)

Question	Answer	Mark
Number		
4 (b)	in diamond strong / covalent bonds must be broken;	
	in water only weak IMF / molecules easy to separate;	(2)

Question	Answer	Mark
Number		
4 (c)	(H ₂ = 2 and) H ₂ O = 18; (or $2H_2O = 36$) ratio 1:1; 20 g \rightarrow 180 g; Or 4 g \rightarrow 36 g;; \rightarrow 20 g \rightarrow 36 x \rightarrow 20 g;	(3)

Question	Answer	Mark
Number		
5 (a)	all three gases / N ₂ , H ₂ and NH ₃ / everything;	
	reaction goes both ways/ reaches equilibrium/	
	reversible/ does not go to completion;	(2)

Question Number	Answer	Mark
5 (b) (i)	increases / more (ammonia);	(1)

Question	Answer	Mark
Number		
5 (b (ii)	fewer molecules on RHS / equilibrium moves to RHS;	(1)

Question	Answer	Mark
Number		
5 (c)	Any three from:	
	1. higher temperature gives lower yield;	
	higher temperature more expensive;	(3)
	lower temperature slower;	
	4. 400 °C optimum;	
	5. 400 °C gives good yield;	
	6. 400 °C gives yield in reasonable time;	
	7. maximum output under these conditions;	
	TOTAL FOR PAPER: 30 MARK	