Abbreviations, annotations and conventions used in the Mark Scheme		ions, ns and ons ie eme	 alternative and acceptable answers for the same marking point separates marking points NOT = answers which are not worthy of credit words which are not essential to gain credit () = words which are not essential to gain credit (i) = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument 		
Que	estion		Expected Answers	Marks	
1	(a)		Arrows of the correct length ± 2 mm	B1	
	(b)	(i)	At B: zero / less than / smaller	B1	
		(ii)	At C: smaller <u>and</u> opposite / negative direction	B1	
		(iii)	At D: same size / no change and no change for all three horizontal components	B1	
	(c)		No change in horizontal component since no air resistance / no components of forces in this direction	B1	
			At B maximum height (therefore no vertical component)	B1	
			At C direction of motion has changed / falling back down / vertical component increases as acceleration is vertically down	B1	
			At D(velocity is same magnitude but opposite direction to starting velocity) ball has accelerated (due to gravity) down to original speed / idea of time or distance down being the same as that going up	B1	
			or alocanoe down being the same as that going up	Total:	8

				Marko
2	(a)	(i)	Braking force is the frictional force applied by the road on the tyre (in the opposite direction to the motion of the vehicle that brings the vehicle to rest)	B1
		(ii)	Braking distance is the distance travelled from the time the brakes are applied to when the vehicle <u>stops</u>	B1
	(b)	(i)	\mathbf{V} institution and $\mathbf{r} = 1/2$	C1
			$= \frac{1}{2} \text{ m v}$	C1
		(ii)	= 667375 (J) (667 kJ) 6.7 x 10 ⁵ (J)	A1
		(11)	$v^2 = u^2 + 2as$ 0 = (31.1) ² + 2 x a x 48.2	C1
				A1
		(iii)	a = 10 .0(3) (m s ⁻²) F = ma or work = force x distance	C1
			= 1380 x 10.03 F = 667375 / 48.2 = 13800 (13846) (N) = 13800 (13846) (N)	A1
				Total: 9

Question			Expected Answers	Marks	
3	(a)	(i)	Work = force x distance moved / displacement in the direction of the force	B1	
		(ii)	Power = rate of doing work / work done per unit time	B1	
	(b)		Watt is the power used when one joule of work is done per second (allow joule / second)	B1	
	(c)	(i) Tension = Weight / mg = 1.5 x 10 ³ x 9.8 using g =10 -1 = 14700 (N)	Tension = Weight / mg = $1.5 \times 10^3 \times 0.8$ using a = 10 1	C1	
			= 1.5 x 10 x 9.8 using g = 10 - 1 = 14700 (N)	A1	
		(ii)	time = 25 / 1.6 = 15.6 (s)	A1	
		(iii)	PE = mgh	C1	
			PE / t = (14700 x 25) / 15.6 or 14700 x 1.6	C1	
			= 24000 (23520) (J s ⁻¹)	A1	
			or power = F x v	C1	
			= 14700 x 1.6	C1	
			= 24000 (23520) (J s ⁻¹)	A1	
		(iv)	(gain in PE per second = output power used to lift weight)		
			power = 24000 (23520) (W) / allow those answers that suggest greater due to friction in lifting	B1	
			mechanism	Total: 10	

Question			Expected Answers	Marks	
4	(a)	(i)	Moment is the force x the perpendicular distance from (the line of action of) the force to the pivot/ point		
		(ii)	(missing perpendicular –1, missing from the force to the pivot / point –1)	B2	
	(b)	(i) 1	Torque of a couple: one of the forces x perpendicular distance between (the lines of action of) the forces	B1	
			$3600 \times 1.0 = X \times 2.5$	C2	
			one mark for one correct moment, one mark for the second correct moment and equated to first moment	A0	
		2	X = 1440 (N)	C1 A1	
		(ii)	Y = 3600 - 1440 or 3600 x 1.5 = Y x 2.5 = 2160 (N)	B1	
			Not a couple as forces are not equal	B1	
		(iii)	and not in opposite directions / the forces are in the same direction	C1	
			P = F / A = 1440 / 2.3 x 10 ⁻² = 62609 (6.3 x 10 ⁴)	B1 B1	
			unit Pa or N m ⁻²	Total:	12

Question			Expected Answers	Marks	
5	(a)	(i)	Stress = force / <u>cross-sectional</u> area	B1	
		(ii)	Strain = extension / <u>original</u> length	B1	
	(b)	(i) 1	Elastic as returns to original length (when load is removed)	B1	
		2	Hooke's law is obeyed as force is proportional to the extension Example of values given in support from table	B1 B1	
		(11)	Measure (original) length with a (metre) rule / tape	BI	
		(iii)	Suitable method for measuring the extension eg levelling micrometer and comparison wire or fixed scale plus vernier or travelling microscope and marker / pointer	B1 C1	
		()	E = stress / strain	04	
			= (25 x 1.72) / (1.8 x 10 ⁻⁷ x 1.20 x 10 ⁻³)		
			= 1.99 x 10 ¹¹ (Pa)	A1	
				Total:	10

Question	Expected Answers	Marks	
6 (a)	At t = 0 / at start velocity is zero as gradient is zero	B1	
	The velocity then increases	B1	
	As gradient increases	B1	
	The velocity is then constant	B1	
	As the gradient is constant	B1	
	Velocity decreases	B1	
	As gradient decreases	B1	
	Then velocity is zero	B1	
	As gradient is zero	B1	
	Increasing velocity / in opposite/ negative direction	B1	
	As gradient is negative (and increasing)	B1	
	Velocity decreasing	B1	
	As gradient is decreasing	B1	
	It comes to rest as gradient is zero	B1	
			Max 5
(b)	Acceleration is change in velocity divided by time	B1	
	taken		
	The velocity can be determined by the gradient of	B1	
	(tangent to curve) graph		
	[max of two for explanations]		
		B1	
	(Gradient is increasing) car is accelerating		
		B1	
	(Then no change in gradient) no acceleration		
		B1	
	Then (velocity decrease) deceleration occurs		
	Then (velocity increases) acceleration in opposite	B1	
	direction or deceleration continues		
	Then deceleration in original direction (as velocity	B1	
	decreases)		
			Max 4
	[max of three for statements]		
		B1	
	SPAG	B1	
	ORGANISATION		
		Total:	11