	estion		Expected Answers		Marl	ks 2
1	а	i ii	Work = force x distance ;moved in direction of force; power = work/time;AW		1	2
		**	power = force x distance/time = force x velocity		1	2
	b	i	k.e. = $\frac{1}{2}$ mv ² ;		1	
			$= 0.5 \times 120 \times 25 = 1500 \text{ (J)}$		1	2
		ii 	$P = Fv \text{ or } 200 = F \times 5; F = 200/5 = 40 \text{ (N)}$			2 2
	_	iii	Fd = 1500; so d = 1500/40 = 37.5 (m) ecf from b(i) and (ii) $\Delta p.e./second = mgvsin \theta = 120 \times 9.8 \times 5 \times 0.033$; = 194 (W)		2	2
	С		n.b. allow using 1/30 ans: 196 (W)		_	
			AW, e.g.: force downhill $F = mgsin \theta$; extra power = Fv, etc.			
			P = 200 + 194 = 394 (W)		1	3
				Total		13
2	а		Celsius and kelvin scales have same increment/AW		1	
			temperature scales differ numerically by 273		1	
			a, ccc, ccc = 1 c is a it cg. g. a	x 2	1	2
	b	i	reference to V/T = constant / p/T = constant / pV/T = constant /=	nR;	1	
			at absolute zero, p =0 / V = 0 / pV = 0 graphical solution/description acceptable		1	2
		ii	temperature is proportional to/a measure of (kinetic) energy of		1	-
		"	molecules/atoms or relationship obviously implied		•	
			at absolute zero, k.e. is zero/molecules stop moving		1	2
	С	i	$p/T = constant /AW$; $p/p_o = T_1/T_o = 400/300 giving p = 1.33 p_o$			2
		ii	use of n = pV/RT / $n \propto p$ / $N \propto p$ / $f = (N_B/N_A) = n_B/n_A = p_o/p$		1	_
			= 3/4 or 0.75 ecf from c(i)	Total	1	2 10
				IOtal		10
3	а		Force on unit charge (at that point);		1	_
		_	further detail, e.g positive or stationary		1	2
	b	ı	suitable recognisable pattern around (NOT just between) charges; quality mark, i.e. symmetry, spacing, lines joined to charges, etc;		1	
			arrows towards B on some lines		i	3
		ii	use of E = $(1/4\pi\epsilon_0)$ Q/r ² ; use of r = 4.0 x 10^{-10} ;		2	
			sum of two equal terms		1	
			$E = 2 \times 9 \times 10^{9} \times 1.6 \times 10^{-19} / (4.0 \times 10^{-10})^{2} = 1.8 \times 10^{10}$		1	_
			N C ⁻¹ or V m ⁻¹ or C F ⁻¹ m ⁻¹		1	5
	С	i	equal and opposite forces or suitable E-field patterns drawn on each	n	2	
		ïi	figure in correct directions (fig. 3.2) no motion as (electric) forces on charges are equal and		4	
		11	opposite/AW		1	
			(fig. 3.3) the dipole rotates to/oscillates about the position in Fig.3.2		1	
			because a couple is formed/no translational motion/no c. of m.			
			motion/rotation clockwise		1	5
				Total		15

Question 4 a i		i	Expected Answers $C_p = 2C + C = 3C$		Marks 1	
7	а	i ii	$1/C_s = 1/2C + 1/C$; = 3/2C giving $C_s = 2C/3$		2	
	b	i	V		~ 1	
	D	i ii	$Q = C_pV$; = 3CV ecf from a(i)		2	
	_	11	$E = \frac{1}{2} C_s V^2$; = $\frac{1}{3} C V^2$ ecf from a(ii)		2	
	C	•			2	
	d	i	discharge circuit made through voltmeter/plates connected through voltmeter/AW	1		
			voltmeter behaves as a (large) resistor so plates will discharge;	1		
			rate of discharge depends on size of voltmeter's resistance/AW/			
			similar suitable comment max 2	1	2	
		ii	capacitors in series/Fig.4.2 as capacitance is smaller;	1		
			rate of discharge depends on value of RC/time constant	1	2	
			Total		12	
5	а	i	An element can exist in more than one form, having a different number		_	
			of neutrons/can have different mass but same proton number/AW		1	
		ii	$^{4}_{2}\text{He} / ^{4}_{2}\alpha$; (-) $^{0}_{-1}\text{e} / ^{0}_{-1}\beta$		2	
		iii	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3		
			or $^{238}_{92}U \rightarrow ^{234}_{90}X + ^{4}_{2}\alpha$	1		
			$^{234}_{90}X \rightarrow ^{234}_{91}Y + ^{0}_{-1}\beta$	1		
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1		
			or α followed by two β decays;	1		
			nucleon number $=238 - 4 - 0 - 0 = 234$;	1		
			proton number = 92 - 2 + 1 + 1 = 92	1		
			or answer in terms of A,p or n,p diagram	-	3	
	b	i	N : the number of undecayed nuclei/nuclei of the original element		•	
		•	(remaining)	1		
			N _o : the initial/original number of nuclei present	i		
			· ·	•		
			λ : the (decay) constant relating the activity to the number of undecayed nuclei/AW/the probability of a given nucleus decaying in the next second	1	3	
					3	
		ii	$f = N/N_0 = e^{-\lambda t}$; = exp(-0.693 x 4.6 x10 ⁹ /7.1 x 10 ⁸);	2		
			$= \exp(-4.49) = 0.011$	1	•	
			or time = 6.48 half lives; so f = 1/2 ^{6.48} ; = 0.011	3	3	
			Total		12	
6	а	i	Arrow through P towards centre of circle		1	
		ii	Fleming's LHR (for conventional current/positive charge movement)		1	
•		iii	force of constant magnitude/on (moving) charge/ion caused by			
		•	(perpendicular) B-field	1		
			direction perpendicular to path at all times/towards centre of circle	1	2	
	b		larger semicircle/less curvature;	1		
	N		force same; quote Newton 2; mass larger so less acceleration max 2	2	3	
	С	:	F = BQy; = $0.60 \times 1.6 \times 10^{-19} \times 3.0 \times 10^5 = 2.9 \times 10^{-14}$ (N)	_	2	
	C	i ii	$F = Mv^2/r$; $r = 4.0 \times 10^{-26} \times 9.0 \times 10^{10}/2.9 \times 10^{-14}$; $= 0.125$ (m)		3 2 3	
		11	Total		12	
			Total		12	

Question	Expected Answers		Marks	
7 a	Resonance occurs at /close to the natural frequence object/system caused by driving force (at this frequency)		1	
	when maximum amplitude of driven achieved/maxi between driver and driven Examples:	mum energy transfer max 2	1	
	(good) microwaves, watch (quartz), pendulum clock, open and closed pipes, electrical resonance/tuning, etc (bad) Tacoma Narrows or Millennium bridge, wine glass fracture, vibration of building/earthquake, motor car wing mirror, rattles/steering wheel vibration at different speeds, etc			
	Practical significance of each choice given in a meaningful manner Nature of driving force clearly stated for each example			
_		maximum 7 marks		7
b	Resonance over wider frequency range		1	
	energy stored/amplitude of resonance decreased		1	
	shift down of resonance frequency with increased damping			
	critically or overdamped system will not oscillate/no resonance oscillation die away quickly/ exponentia		1	
	with damping etc. when driving force removed, etc		1	
	a correctly annotated amplitude v frequency diagram can score 3 marks Suitable example of a real vibrating system allow any sensible			
	laboratory demonstration	•	1	
	relating real system to features described	up to 2 marks maximum 5 marks	2	5
	Quality of Written Communication			4
		Total		16

Criteria for assessment of written communication

4 marks

- The candidate expresses ideas extremely clearly and fluently. Sentences and paragraphs follow on from one another smoothly and logically.
- Arguments are consistently relevant, based on sound knowledge of Physics, and are well structured.
- There are few, if any, errors in grammar, punctuation and spelling.

3 marks

- The candidate expresses moderately complex ideas clearly and reasonably fluently through well-linked sentences and paragraphs.
- Arguments are generally relevant being based on a good knowledge of physics, and are well structured.
- There are occasional errors in grammar, punctuation and spelling.

2 marks

- The candidate expresses straightforward ideas clearly and accurately, if not always fluently.
 Sentences and paragraphs are not always well connected.
- Arguments may sometimes stray from the point or be weakly presented.
- There are some errors in grammar, punctuation and spelling, but not to suggest a serious weakness in these areas.

1 mark

- The candidate expresses simple ideas clearly, but is imprecise and awkward in dealing with complex or subtle concepts.
- Arguments are of doubtful relevance or obscurely presented.
- Errors in grammar, punctuation and spelling and noticeable and intrusive, suggesting weaknesses in these areas.

0 marks

- Even simple ideas are not expressed clearly.
- Arguments are irrelevant or poorly stated.
- There are gross errors in grammar, punctuation and spelling.