

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

PHYSICS A

2826/01

Unifying Concepts in Physics

Thursday

20 JANUARY 2005

Morning

1 hour 15 minutes

Candidates answer on the question paper. Additional materials: Electronic calculator Ruler (cm/mm)

Candidate Name	Centr	e Numb	er	ıdidat mbei	

TIME 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You may use an electronic calculator.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
1	11	
2	17	
3	17	
4	15	
TOTAL	60	

This question paper consists of 12 printed pages.

Data

speed of light in free space,	$c = 3.00 \times 10^8 \mathrm{ms^{-1}}$
permeability of free space,	$\mu_0 = 4\pi \times 10^{-7} \mathrm{Hm^{-1}}$
permittivity of free space,	$\epsilon_0 = 8.85 \times 10^{-12} \mathrm{F m^{-1}}$
elementary charge,	$e = 1.60 \times 10^{-19} \mathrm{C}$
the Planck constant,	$h = 6.63 \times 10^{-34} \mathrm{J}\mathrm{s}$
unified atomic mass constant,	$u = 1.66 \times 10^{-27} \text{ kg}$
rest mass of electron,	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
rest mass of proton,	$m_{\rm p} = 1.67 \times 10^{-27} \rm kg$
molar gas constant,	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
the Avogadro constant,	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
gravitational constant,	$G = 6.67 \times 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$
acceleration of free fall,	$g = 9.81 \text{ m s}^{-2}$

Formulae

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

$$n = \frac{1}{\sin C}$$

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

$$C = C_1 + C_2 + \dots$$

$$x = x_0 \mathrm{e}^{-t/CR}$$

$$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$$

$$x = x_0 e^{-\lambda t}$$

$$t_{\frac{1}{2}} = \frac{0.693}{\lambda}$$

$$\rho_0 = \frac{3H_0^2}{8\pi G}$$

$$=\sqrt{(1-\frac{v^2}{c^2})}$$

current,

I = nAve

nuclear radius,

$$r = r_0 A^{1/3}$$

sound intensity level,

$$= 10 \lg \left(\frac{I}{I_0} \right)$$

Answer all the questions.

1 The four sketch graphs in Fig. 1.1, plotted against time, show changes which occur in a small fraction of a second and which result in almost vertical lines on the graphs. Three of these sketch graphs are possible for ordinary objects and one of them is impossible.

Fig. 1.1

(a)	Identify the	impossible	graph,	giving	a reason	for your	selection.
-----	--------------	------------	--------	--------	----------	----------	------------

Impossible graph is	[1]
Reason why it is impossible	
	[1]

(b)	Describe three everyday situations, one for each, which illustrate how the remaining graphs can arise. State to which graph each description refers.
	graph letter
	[3]
	graph letter
	[3]
	graph letter
	· · · · · · · · · · · · · · · · · · ·
	[3]
	(Total: 11)

2	Flow occurs in many different aspects of physics. For example, flow of electrons is an electric current, heat flow takes place as a result of a temperature gradient and flow of water or gas along a pipe is a common experience. The dimensions of the material through which flow occurs, together with the properties of the material and the cause of flow, determine the
	amount of flow which takes place.

(a)	Why is one pipe necess necessary for the supply o	ary for the felectricity?	supply of	gas to a	house but	t two cable	s are
				•••••••	••••••		

(b) The amount of heat energy flowing per unit time through the wall of a room is given by

$$\frac{Q}{t} = kA \left(\frac{\theta_2 - \theta_1}{d} \right)$$

where Q is the quantity of heat energy which flows in time t,

k is called the thermal conductivity, A is the surface area of the wall,

d is the thickness of the wall

and θ_2 and θ_1 are the inside and outside temperatures respectively.

(i) Deduce the SI unit of k, the thermal conductivity.

unit of *k*[3]

(ii) Calculate the rate at which heat energy is lost through the wall of the room under the following conditions.

k = 0.35 in SI units $A = 12.0 \,\text{m}^2$

 $\theta_2 = 22.0 \,^{\circ}\text{C}$

 $\theta_{1}^{z} = 8.0 \,^{\circ}\text{C}$

 $d = 0.10 \,\mathrm{m}$

(c)	(i)	Write a corresponding equation to that in (b) for charge flow per unit time, $\frac{Q}{t}$ through a wire, in terms of the potential difference across the wire V the resistivity of the material of which the wire is made ρ and the length I and area of cross-section A of the wire.
		[2]
	(ii)	Compare the equations in (c)(i) and (b).
		1 State which thermal property corresponds with V in the electrical case.
		[1]
		2 State which thermal property corresponds with ρ in the electrical case.
		[1]
(d)	(i)	Flow of gas through a pipe follows the same pattern as for electron flow and heat flow. Suggest an equation for gas flow. State the meaning of any symbols you introduce.
	(ii)	[3] 160 cm³ of gas flow per second through a pipe of internal diameter 15 mm. How much gas will flow per second through a pipe of internal diameter 22 mm under the same conditions?

[Total:17]

Fig 3.1 shows a **full-scale** cross-section of the electric field in the region of a positively charged circular metal rod and a U-shaped metal frame. The potential difference between the rod and the frame is 600 V with the frame earthed at 0 V. Also shown on the diagram are dotted lines showing where the potential is 500 V, 400 V, 300 V, 200 V and 100 V.

Fig. 3.1

(a)	Define electric field strength at a point in an electric field.

	[1]
	[1]

(b) Draw on Fig. 3.1 at point **A** an arrow to show the direction of the force exerted by the field on a small positive charge placed at **A**.

(c)	Is the charge on the inside of the earthed frame positive, negative or zero? Explain your answer.	
	[1]	
(d)	Draw a line on Fig. 3.1 linking all the points where the potential is 250 V. [1]	
(e)	(i) By taking readings and measurements from Fig. 3.1, calculate the electric field strength at B , where the field may be considered to be uniform. Give the unit of electric field strength.	
	electric field strength = unit [4] (ii) Calculate the magnitude and direction of the force on an electron at B .	
	(ii) Calculate the magnitude and all colors of the formation of the colors of the colo	
	force = N in a direction[3]	
(f)	Sketch a plan showing how magnets could be arranged in order to create a magnetic field of similar shape to the electric field inside the frame. Show the polarity on each magnet you suggest using.	
	[3]	
(g)	Give two reasons why a gravitational field of this shape is impossible, whatever size field is considered.	
	[3]	Ē

		energies.
(a)	(i)	State the names and wavelengths for the shortest and longest electromagnetic waves.
		shortest: name wavelengthm
		longest: name wavelength [4]
	(ii)	Calculate the ratio
		longest wavelength shortest wavelength
		ratio =[1]
((iii)	Two notes in sound which are an octave apart have a wavelength ratio of 2. When the notes are three octaves apart, the wavelength ratio is 8 since $8 = 2^3$. By how many octaves does your answer to (ii) correspond?
		number of octaves[2]
((iv)	Calculate the maximum energy of a photon in the electromagnetic spectrum, using a value of wavelength which you have given in (i).
		photon energy J [2]

)	of the spectrum.
	Discuss two features of electromagnetic waves, other than just wavelength and frequency, which do change across the spectrum.
	[6]

[Total: 15]

END OF QUESTION PAPER

OCR has made every effort to trace the copyright holder of items used in this Question paper, but if we have inadvertently overlooked any, we apologise.