

OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary GCE

PHYSICS A

2823/01

Wave Properties

Monday

14 JUNE 2004

Afternoon

45 minutes

Candidates answer on the question paper. Additional materials: Electronic calculator

Candidate Name	Centre Number	Candidate Number	

TIME 45 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You may use an electronic calculator.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE		
Qu.	Mark	
1	9	
2	7	
3	9	
4	8	
5	12	
TOTAL	45	

Data

speed of light in free space,	$c = 3.00 \times 10^8 \mathrm{ms^{-1}}$
permeability of free space,	$\mu_0 = 4\pi \times 10^{-7} \mathrm{Hm^{-1}}$
permittivity of free space,	$\epsilon_0 = 8.85 \times 10^{-12} \mathrm{F m^{-1}}$
elementary charge,	$e = 1.60 \times 10^{-19} \mathrm{C}$
the Planck constant,	$h = 6.63 \times 10^{-34} \mathrm{J}\mathrm{s}$
unified atomic mass constant,	$u = 1.66 \times 10^{-27} \text{ kg}$
rest mass of electron,	$m_{\rm e} = 9.11 \times 10^{-31} \text{ kg}$
rest mass of proton,	$m_{\rm p} = 1.67 \times 10^{-27} \rm kg$
molar gas constant,	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
the Avogadro constant,	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
gravitational constant,	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
acceleration of free fall,	$g = 9.81 \text{ m s}^{-2}$

Formulae

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$
$$n = \frac{1}{\sin C}$$

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

$$C = C_1 + C_2 + \dots$$

$$x = x_0 e^{-t/CR}$$

$$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$$

radioactive decay,

$$x = x_0 e^{-\lambda t}$$

$$t_{\frac{1}{2}} = \frac{0.693}{\lambda}$$

critical density of matter in the Universe,

$$\rho_0 = \frac{3H_0^2}{8\pi G}$$

$$=\sqrt{(1-\frac{v^2}{c^2})}$$

current,

$$I = nAve$$

nuclear radius,

$$r = r_0 A^{1/3}$$

sound intensity level,

$$= 10 \lg \left(\frac{I}{I_0} \right)$$

Answer all the questions.

- 1 Light travels at a speed of $3.00 \times 10^8 \,\mathrm{m \, s^{-1}}$ in air and $2.25 \times 10^8 \,\mathrm{m \, s^{-1}}$ in water.
 - (a) (i) Calculate the refractive index for light travelling from air to water.

refractive index =[2]

(ii) Calculate the angle of refraction r for a ray of light entering water from air at an angle of incidence of 40° .

r = ° [2]

(b)

Fig. 1.1

- (i) On Fig.1.1, draw a ray diagram to show what is meant by the critical angle for the air/water interface. Show the direction of the ray and label the critical angle *C*. [3]
- (ii) Calculate the value of C for the air/water interface.

C =° [2]

[Total: 9]

2	(a)	State what is meant by the diffraction of waves.
		[1]
	(b)	Draw diagrams, in the spaces below, to illustrate how plane water waves are diffracted when they pass through a gap
		(i) about 2 wavelengths wide
		(ii) about 10 wavelengths wide.
		[4]
	(c)	Suggest why the diffraction of light waves cannot usually be observed except under laboratory conditions.
		[2]
		[Total: 7]

3 Fig. 3.1 shows the displacement-time graph for a particle in a medium as a progressive wave passes through the medium.

displacement/mm

Fig. 3.1

- (a) Determine from the graph
 - (i) the amplitude of the wave

(ii) the period of the wave.

(b) (i) What is the frequency of the wave?

(ii) The speed of the wave is $1500 \,\mathrm{m \, s^{-1}}$. Calculate its wavelength.

(iii) Use the grid in Fig. 3.2 to sketch a displacement-position graph for the wave at a particular instant. Mark the scale on the position axis and draw at least two full cycles. [3]

Fig. 3.2

[Total: 9]

4 Fig. 4.1 shows an arrangement where microwaves leave a transmitter **T** and move in a direction **TP** which is perpendicular to a metal plate **P**.

Fig. 4.1

(a) When a microwave detector **D** is slowly moved from **T** towards **P** the pattern of the signal strength received by **D** is high, low, high, low ... etc.

Explain

why these maxima and minima of intensity occur

how you would determine their frequency.

how you would measure the wavelength of the microwaves

[6]
 [O]

transmitter are plane	rowaves leaving the		Describe I polarised.	b)
		 ***************************************	***************************************	
	·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	••••••	
[2]				
 Total: 8'				

5	(a)	Explain wh	at is meant	by the <i>princip</i>	ole of superp	osition of two v	waves.		
		***************************************		***************************************				***************************************	••••
				•••••					
				• • • • • • • • • • • • • • • • • • • •			••••••		[2]
	(b)	Fig. 5.1 sho	ows the arra	ngement for	viewing a vis	ible interferend	ce patterr	n on a screen.	
			ı					screen	
		ochromatic source							
	g	<u> </u>	S ₁					0	
		O	$ \mathbf{s}_{2} $						
			·					ł	
				I	Fig. 5.1				
		In a darken	ned room, a a monochror	double slit (S natic (one fre	₁ S ₂) is place equency only	d in front of a r) light source.	narrow si	ngle slit situat	ed
				e a clear into State what is		ttern on the so	creen, th	e wave sourc	es

									[1]
			n how the ent light sou		shown ens	ures that the	slits S ₁		
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						

iii)	The point O on the screen is directly opposite the centre of the double slit. State and explain the nature of the interference that occurs at O .
	[2]
iv)	The distance between slits $\mathbf{S_1}$ and $\mathbf{S_2}$ is 0.6 mm. When the screen is placed 1.8 m from the slits, the distance between neighbouring minima in the interference pattern formed on the screen is 2.0 mm. Calculate the wavelength of the light.
	wavelength = m [3]
(s.e.)	•
(v)	State and explain how the interference pattern changes when light of a shorter wavelength is used in the experiment.
	[2]
	[Total: 12]

END OF QUESTION PAPER