1.	(a)(i)	i correctly labelled r correctly labelled {Allow 1 mark if i and r are transposed but ZERO marks if angles labelled from ray to surface}	B1 B1	[2]
	(ii)	<pre>n = sin i/sin r {correct answer only - i.e. ignore diagram and do not allow error carried forward}</pre>	B1	[1]
	(b)(i)	speed : decreases frequency: stays the same wavelength : decreases	B1 B1 B1	[3]
	(ii)	new speed = v/n (OR $f \lambda / n$ OR c/n OR $3x10^8/n$)	B1	
		new wavelength = λln (OR v/fn) {The new speed and new wavelength must be the subject of the equations - i.e do not allow general expressions which appear to contain new values of v and λ . Simply stating $v=f\lambda$ does not score any marks}	B1	[2]
			OTAL	= 8]
2.	(a)(i)	TOTAL INTERNAL REFLECTION (allow TIR)	B1	[1]
	(ii)	angle of incidence GREATER than the critical angle R.I of core > R.I of cladding OR density of core > density of cladding OR speed of light in core < speed in cladding {Allow 2 marks if candidate simply states "θ > critical angle " provided he defines the meaning of the critical angle in words or in a diagram i.e. B1 + B1}	B1 B1	[2]
	(b)(i)	recall of $n = c_1/c_2$ $c_{core} = 3x10^8/1.48 = 2.03 \times 10^8$ (OR 2 x 10 ⁸) (m s ⁻¹)	C1 A1	[2]
	(ii)	valid substitution into $t = d/v$: e.g. $t = 900 / 2.03 \times 10^8$ minimum time = 4.4 x 10 ⁻⁶ s {allow ecf for v from b (i) e.g. 4.5×10^{-6} }	C1 A1	[2]
	(iii)	valid substitution into $d = v \times t$: e.g. $d = (2.03 \times 10^8) \times (45 \times 10^{-9})$ extra distance = 9.1 (OR 9) m {allow ecf for v from b (i) AND check that c_{core} - 2.03 $\times 10^8$ -is used } {Many are calculating the total distance - $(4.4 \times 10^6 + 45 \times 10^9) \times 2.03 \times 10^8 = 902m$ - this scores the first C1 mark for a 'valid' substitution but they must subtract 900m to score the final mark - it will probably not be 9 m but apply ecf - in the example above it would be 2m}	C1 A1	[2]

	(c) (i)	intensity pulse now and lower	(ie less intense) M1	[2]
		time		
	(ii)	different parts of pulse follow diff. ^t paths OR r (hence) pulse spread over longer time (WTTE) {Allow 1 mark for energy spread over longer {The words longer and shorter must be defined to the longer path. Also allow "area under the graph."	A1 r time OR <u>energy</u> lost/absorb ned: eg longer time /	[2]
			[TOTAL	= 13]
3.	(a)	interfere destructively: the resultant wave has r OR "waves cancel each other" OR shown on a conditions: waves must meet 180° OR π OR $1/\circ$ OR in ANTI-phase 'crest of one meets trough of waves must have equal amplitude (not 'cohere	diagram B1 2 λ out of phase B1 of other' OR shown on diagram	[3]
	(b)(i)	for maxima path difference = 0 OR λ OR $n\lambda$ series of maxima occur at pts. where path diff = (OR when n = 0, 1, 2, 3 OR n is an integer)		[2]
	(ii)	$x = \lambda D/a$ (allow $\lambda = ax/D$ or any valid form)	B1	[1]
	(iii)	x DECREASES to HALF previous value {Allow full ecf from incorrect formula - e.g " doubles" gets 2 marks- but give full credit for even if the candidate has quoted an incorre	or expected answer	[2]
	(c)	wavetrains must be coherent (OR const phase same frequency) an explicit reference to the SLITS or the TRAN- two transmitters would not be coherent (WTT	C1 SMITTERS is needed: e.g.	
		OR two slits in front of a transmitter create of		[2]
			[TOTAL	= 10]
4.	(a)	plane wavefronts approaching a gap 'semicircular' (allow ANY spreading shape) wano change of wavelength stated or shown (ge		[3]
	(b)	sound waves are diffracted around the wall (OR spread out on other side {Allow 1 mark for "sound is transmitted throis not" OR "sound λ>>light λ and hence no	ough the wall but light	[2]
			[TOT]	_ = 5]