| Final Mark Scheme 2823/01 | Ju | ine 2004 | |---|---------------------|--------------| | 1.(a) (i) recall of R.I = c_i / c_r OR 3.00 x 10 ⁸ / 2.25 x 10 ⁸ = 1.33 (OR 1.3)
{NB award 1 mark only for a bare 1.3 but <u>2 marks</u> for a bare 1.3 | , A | C1
A1 [2] | | (ii) recall of R. I. = $\sin i/\sin r$
(1.33 = $\sin 40/\sin r$, hence) $r = 29^\circ$ (expect 28.9)
{NB allow ecf from (i) e.g. for n=1.3 $r = 29.7$ or 30° }
{NB watch out for $40/1.3 = 30.7^\circ$ being offered as the answer!} | | C1
A1 [2] | | (b) (i) Shown on Fig.1.1: ray travelling towards air from water <u>arrow(s) must be</u> | <u>shown</u> E | 31 | | ray shown travelling along {or just above} water surface | e E | 31 | | valid C correctly labelled {do not penalise or reward presence of partially reflected | | 31 [3] | | (ii) use of RI = 1/sinC:
e.g. sinC = 1/n OR sinC =1/1.33 OR 1.33 = 1/sinC)
C = 49°
{allow ecf from (i) e.g. for n=1.3 C = 50.2 or 50°} | | C1
\1 [2] | | | TOT | TAL: 9 | | 2. (a) spreading (out of waves as they pass through an opening {NB ignore bending/changes direction/deviates/disperses} | ı or an edge) - E | 31 [1] | | (b) (i) (circular) arcs drawn after gap: i.e. reject any flatness | E | 31 | | (ii) waves must have plane central section (ignore curved | edges} E | 31 | | evidence that wavelength stays constant shown in eitlefunded by eye unless λ is labelled before and after ga | | 31 | | Gap widths look about right w.r.t. λ i.e. x2 and x10 - go judged by eye, looking at (i) first then comparing gap s | | s1 [4] | | (c) Wavelength of light is very short | | 11 | | most gaps are very large in comparison to wavelength OR small gaps are needed (to observe diffraction) (AW) | OR small gaps
B1 | [2] | | | тс | TAL: 7 | .] | Final Mark Scheme | 2823/01 | June 2004 | |---|--|--------------| | | • | B1
B1 [2] | | (b) (i) wave sources with country (NB allow "in phase" and ig | constant phase difference
gnore reference to frequency/wavelength/amplitude} | B1 [1] | | (ii) S_1 and S_2 'share the | e same light' (AW) | B1 | | | tion at the single slit e.g. "same wavefront reaches S_1 and S_2 (AW) | B1 [2] | | (iii) Constructive interfer
path difference is z | rence occurs at O
zero OR waves meet in phase (AW) | B1
B1 [2] | | | ax/D in any valid form (e.g. $x = \lambda D/a$) abols provided they match the above as stated in the ay must be defined | C1 | | correct sub. with con | nsistent units: $\lambda = 2 \times 10^{-3} \times 0.6 \times 10^{-3} / 1.8$
$\lambda = 6.7 \times 10^{-7} \text{ m}$ | C1
A1 [3] | | {NB allow ecf if mm used | l: i.e 2 marks for 6.7x10 ⁻¹ OR 6.7 x 10 ⁻⁴ } | Ai [9] | | (v) 'fringe separation' (AV
{NB allow "more fringes v | • | B1 | | because $x \propto \lambda$ (AW) | | B1 [2] | | {NB allow 'colour change' a
Colour would change
to a colour closer to t | | | | | | TOTAL: 12 |