Physics 2015

AS & A2

Note: AS represents only 40% of the content of the full A level

Topic 1 Working as a physicist AS A2

1.	know and understand the distinction between base and derived quantities	
	and their SI units	
2.	be able to demonstrate their knowledge of practical skills and techniques	
	for both familiar and unfamiliar experiments	
3.	be able to estimate values for physical quantities and use their estimate to	
	solve problems	
4.	understand the limitations of physical measurement and apply these	
	limitations to practical situations	
5.	be able to communicate information and ideas in appropriate ways using	
	appropriate terminology	
6.	understand applications and implications of science and evaluate their	
	associated benefits and risks	
7.	understand the role of the scientific community in validating new	
	knowledge and ensuring integrity	
8.	understand the ways in which society uses science to inform decision	
	making	

Topic 2 Mechanics AS A2

9.	be able to use the equations for uniformly accelerated motion in one	
	S = 2	
	v = u + at	
	$s = ut + \frac{1}{2} a t^2$	
	$v^2 = u^2 + 2as$	
10.	be able to draw and interpret displacement/time, velocity/time and	
	acceleration/time graphs	
11.	know the physical quantities derived from the slopes and areas of	
	displacement/time, velocity/time and acceleration/time graphs, including	
	cases of non-uniform acceleration and understand now to use the	
10	quantities	
12.	understand scalar and vector quantities and know examples of each type	
	of quantity and recognise vector notation	
13.	be able to resolve a vector into two components at right angles to each	
	other by drawing and by calculation	
14.	be able to find the resultant of two coplanar vectors at any angle to each	
	other by drawing, and at right angles to each other by calculation	
15.	understand how to make use of the independence of vertical and	
	horizontal motion of a projectile moving freely under gravity	
16.	be able to draw and interpret free-body force diagrams to represent	
	forces on a particle or on an extended but rigid body	

17	be able to use the equation $\Sigma E = ma_{12}$ and understand how to use this	
17.	De able to use the equation $\sum r = ma$, and understand now to use this equation is situations where m is constant (Newton's second law of	
	equalion in Situations where π is constant (newton's second law of motion), including Newton's first law of motion where $a = 0$, objects at rest	
	or travelling at constant velocity	
	Use of the term terminal velocity is expected	
10	Use of the term terminal velocity is expected $f_{a} = F/m$ and $f_{a} = F/m$ and	
10.	Deable to use the equations for gravitational here strength $y = 1 / m$ and weight $M = ma$	
10	CORF PRACTICAL 1: Determine the acceleration of a freely-falling	
13.	object.	
20.	know and understand Newton's third law of motion and know the	
	properties of pairs of forces in an interaction between two bodies	
21.	understand that momentum is defined as $p = mv$	
22.	know the principle of conservation of linear momentum, understand how	
	to relate this to Newton's laws of motion and understand how to apply this	
	to problems in one dimension	
23.	be able to use the equation for the moment of a force, moment of force =	
	Fx where x is the perpendicular distance between the line of action of the	
	force and the axis of rotation	
24.	be able to use the concept of centre of gravity of an extended body and	
	apply the principle of moments to an extended body in equilibrium	
25.	be able to use the equation for work $\Delta W = F \Delta s$, including calculations	
	when the force is not along the line of motion	
26.	be able to use the equation $E_k = \frac{1}{2} mv^2$ for the kinetic energy of a body	
27.	be able to use the equation $\Delta E_{grav} = mg\Delta h$ for the difference in	
	gravitational potential energy near the Earth's surface	
28.	know, and understand how to apply, the principle of conservation of	
	energy including use of work done, gravitational potential energy and	
20	Kinetic energy	
29.	De able to use the equations relating power, time and energy transiented $D = M/t$	
20	OF WORK done $P = E/L$ and $P = vv/L$	
30.		
	useful energy output	
	efficiency – total energy input	
	chloichey – total chergy input	
	and	
	useful power output	
	efficiency = total power input	

Topic 3 Electric circuits AS A2

31.	understand that electric current is the rate of flow of charged particles and be able to use the equation $I = \Delta Q / \Delta t$	
32.	understand how to use the equation $V = W / Q$	
33.	understand that resistance is defined by $R = V / I$ and that Ohm's law is a special case when $I \propto V$ for constant temperature	
34.	understand how the distribution of current in a circuit is a consequence of charge conservation	
35.	understand how the distribution of potential differences in a circuit is a consequence of energy conservation	

36.	be able to derive the equations for combining resistances in series and parallel using the principles of charge and energy conservation, and be able to use these equations	
37.	be able to use the equations $P = VI$, $W = VIt$ and be able to derive and use related equations, e.g. $P = I^2 R$ and $P = V^2 / R$	
38.	understand how to sketch, recognise and interpret current-potential difference graphs for components, including ohmic conductors, filament bulbs, thermistors and diodes	
39.	be able to use the equation $R = \rho I / A$	
40.	CORE PRACTICAL 2: Determine the electrical resistivity of a	
	material.	
41	be able to use I = nqvA to explain the large range of resistivities of different materials	
42.	understand how the potential along a uniform current-carrying wire varies with the distance along it	
43.	understand the principles of a potential divider circuit and understand how	
	to calculate potential differences and resistances in such a circuit	
44.	be able to analyse potential divider circuits where one resistance is	
	variable including thermistors and Light Dependent Resistors (LDRs)	
45.	know the definition of electromotive force (e.m.f.) and understand what is	
	meant by internal resistance and know how to distinguish between e.m.f. and terminal potential difference	
46.	CORE PRACTICAL 3: Determine the e.m.f. and internal resistance of	
	an electrical cell.	
47.	understand how changes of resistance with temperature may be	
	modelled in terms of lattice vibrations and number of conduction electrons	
	and understand how to apply this model to metallic conductors and negative temperature coefficient thermistors	
48.	understand how changes of resistance with illumination may be modelled	
	in terms of the number of conduction electrons and understand how to	
	apply this model to LDRs.	

Topic 4 Materials AS A2

49.	be able to use the equation density $\rho = m / V$	
50.	understand how to use the relationship upthrust = weight of fluid displaced	
51.	a. be able to use the equation for viscous drag (Stokes's Law), F = $6\pi\eta rv$.	
	b. understand that this equation applies only to small spherical objects	
	moving at low speeds with laminar flow (or in the absence of turbulent	
	flow) and that viscosity is temperature dependent	
52.	CORE PRACTICAL 4: Use a falling-ball method to determine the	
	viscosity of a liquid.	
53.	be able to use the Hooke's law equation, $\Delta F = k\Delta x$, where k is the	
	stiffness of the object	
54.	understand how to use the relationships	
	 (tensile/compressive) stress = force/cross-sectional area 	
	 (tensile/compressive) strain= change in length/original length 	
	 Young modulus = stress/strain 	
55.	a. be able to draw and interpret force-extension and force-compression	
	graphs	
	b. understand the terms limit of proportionality, elastic limit, yield point,	
	elastic deformation and plastic deformation and be able to apply them to	
	these graphs	

56.	be able to draw and interpret tensile/compressive stress-strain graphs,	
	and understand the term breaking stress	
57.	CORE PRACTICAL 5: Determine the Young modulus of a material	
58.	be able to calculate the elastic strain energy E_{el} in a deformed material sample, using the equation $\Delta E_{el} = \frac{1}{2} F \Delta x$, and from the area under the force/extension graph The estimation of area and hence energy change for both linear and non-linear force/extension graphs is expected.	

Topic 5 Waves and particle nature of light AS A2

59.	understand the terms amplitude, frequency, period, speed and	
	wavelength	
60.	be able to use the wave equation $v = f\lambda$	
61.	be able to describe longitudinal waves in terms of pressure variation and	
	the displacement of molecules	
62.	be able to describe transverse waves	
63.	be able to draw and interpret graphs representing transverse and	
	longitudinal waves including standing/stationary waves	
64.	CORE PRACTICAL 6: Determine the speed of sound in air using a 2-	
	beam oscilloscope, signal generator, speaker and microphone.	
65.	know and understand what is meant by wavefront, coherence, path	
	difference, superposition, interference and phase	
66.	be able to use the relationship between phase difference and path	
	difference	
67.	know what is meant by a standing/stationary wave and understand how	
	such a wave is formed, know how to identify nodes and antinodes	
68.	be able to use the equation for the speed of a transverse wave on a	
	string:	
	$v = \sqrt{T} / \mu$	
69.	CORE PRACTICAL 7: Investigate the effects of length, tension and	
	mass per unit length on the frequency of a vibrating string or wire.	
70.	be able to use the equation intensity of radiation $I = P / A$	
71.	know and understand that at the interface between medium 1 and	
	medium 2	
	$n_1 \sin \theta_1 = n_2 \sin \theta_2$ where refractive index is $n = c / v$	
72.	be able to calculate critical angle using $\sin C = 1/n$	
73.	be able to predict whether total internal reflection will occur at an interface	
74.	understand how to measure the refractive index of a solid material	
75.	understand the term focal length of converging and diverging lenses	
76.	be able to use ray diagrams to trace the path of light through a lens and	
	locate the position of an image	
77.	be able to use the equation power of a lens $P = 1/f$	
78.	understand that for this lesses in combination $\mathbf{P} = \mathbf{P}_{t+1} + \mathbf{P}_{t+1}$	
70		
79.	know and understand the terms real image and virtual image	
79. 80.	know and understand the terms real image and virtual image be able to use the equation $1 / u + 1 / v = 1 / f$ for a thin converging or	
79. 80.	know and understand the terms real image and virtual image be able to use the equation $1 / u + 1 / v = 1 / f$ for a thin converging or diverging lens with the real is positive convention	
79. 80. 81.	know and understand the terms real image and virtual image be able to use the equation $1 / u + 1 / v = 1 / f$ for a thin converging or diverging lens with the real is positive convention know and understand that magnification = image height/object height and	
79. 80. 81.	know and understand the terms real image and virtual image be able to use the equation $1 / u + 1 / v = 1 / f$ for a thin converging or diverging lens with the real is positive convention know and understand that magnification = image height/object height and m = v / u	

83.	understand what is meant by diffraction and use Huygens' construction to	
	explain what happens to a wave when it meets a slit or an obstacle	
84.	be able to use $n\lambda = dsin\theta$ for a diffraction grating	
85.	CORE PRACTICAL 8: Determine the wavelength of light from a laser	
	or other light source using a diffraction grating.	
86.	understand how diffraction experiments provide evidence for the wave	
	nature of electrons	
87.	be able to use the de Broglie equation $\lambda = h / p$	
88.	understand that waves can be transmitted and reflected at an interface	
	between media	
89.	understand how a pulse-echo technique can provide information about	
	the position of an object and how the amount of information obtained may	
	be limited by the wavelength of the radiation or by the duration of pulses	
90.	understand how the behaviour of electromagnetic radiation can be	
	described in terms of a wave model and a photon model, and how these	
	models developed over time	
91.	be able to use the equation $E = hf$, that relates the photon energy to the	
	wave frequency	
92.	understand that the absorption of a photon can result in the emission of a	
	photoelectron	
93.	understand the terms threshold frequency and work function and be able	
	to use the equation $hf = \phi + \frac{1}{2} mv^{2}_{max}$	
94.	be able to use the electronvolt (eV) to express small energies	
95.	understand how the photoelectric effect provides evidence for the particle	
	nature of electromagnetic radiation	
96.	understand atomic line spectra in terms of transitions between discrete	
	energy levels and understand how to calculate the frequency of radiation	
	that could be emitted or absorbed in a transition between energy levels	

Topic 6 Further Mechanics A2

97.	understand how to use the equation impulse = $F\Delta t = \Delta p$ (Newton's	
	second law of motion)	
98.	CORE PRACTICAL 9: Investigate the relationship between the force	
	exerted on an object and its change of momentum.	
99.	understand how to apply conservation of linear momentum to problems in	
	two dimensions	
100.	CORE PRACTICAL 10: Use ICT to analyse collisions between small	
	spheres, e.g. ball bearings on a table top.	
101.	understand how to determine whether a collision is elastic or inelastic	
102.	be able to derive and use the equation $E_k = p^2 / 2m$ for the kinetic energy	
	of a nonrelativistic particle	
103.	be able to express angular displacement in radians and in degrees, and	
	convert between these units	
104.	understand what is meant by angular velocity and be able to use the	
	equations $v = \omega$ r and T = $2\pi / \omega$	
105.	be able to use vector diagrams to derive the equations for centripetal	
	acceleration $a = v^2 / r = r\omega^2$ and understand how to use these equations	
106.	understand that a resultant force (centripetal force) is required to produce	
	and maintain circular motion	l
107.	be able to use the equations for centripetal force F = ma = m v ² / = mr ω^{2}	
1		4

Topic 7 Electric and Magnetic Fields A2

108.	understand that an electric field (force field) is defined as a region where	
	a charged particle experiences a force	
109.	understand that electric field strength is defined as $E = F / Q$ and be able	
	to use this equation	
110.	be able to use the equation $F = Q_1 Q_2 / 4\pi\epsilon_0 r^2$, for the force between two	
	charges	
111.	be able to use the equation $E = Q / 4\pi\epsilon_0 r^2$ for the electric field due to a	
	point charge	
112.	know and understand the relation between electric field and electric	
440	potential $\mathbf{r} = \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} \right]$	
113.	be able to use the equation $E = V / d$ for an electric field between parallel	
114	plates $V = \Omega / 4\pi \alpha r - for a radial field$	
114.	be able to use $V = Q/4\pi\epsilon_{01} = 101$ a facial field	
115.	to describe radial and uniform electric fields	
116.	understand that capacitance is defined as $C = Q / V$ and be able to use	
	this equation	
117.	be able to use the equation $W = \frac{1}{2} Q V$ for the energy stored by a	
	capacitor, be able to derive the equation from the area under a graph of	
	potential difference against charge stored and be able to derive and use	
	$W = \frac{1}{2} C \sqrt{2}$ and $W = \frac{1}{2} C \sqrt{2}$	
110	$W = \frac{1}{2} C VZ$ and $W = \frac{1}{2} Q / C$	
110.	capacitor circuits and understand the significance of the time constant RC	
119	CORE PRACTICAL 11: Use an oscilloscope or data logger to display	
_	and analyse the potential difference (p.d.) across a capacitor as it	
	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor.	
120.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_0 e^{-t/RC}$ and derive and use related	
120.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_0 e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit,	
120.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_0 e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit, $I = I_0 e^{-t/RC}$, and $V = V_0 e^{-t/RC}$ and the corresponding log equations	
120.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_0 e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit, $I = l_0 e^{-t/RC}$, and $V = V_0 e^{-t/RC}$ and the corresponding log equations	
120.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_0 e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit, $I = I_0 e^{-t/RC}$, and $V = V_0 e^{-t/RC}$ and the corresponding log equations $\ln Q = Q_0 - t/RC$, $\ln I = \ln I_0 - t/RC$ and $\ln V_0 - t/RC$	
120.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_0 e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit, $I = l_0 e^{-t/RC}$, and $V = V_0 e^{-t/RC}$ and the corresponding log equations $ln Q = Q_0 - t/RC$, $ln I = ln l_0 - t/RC$ and $ln V_0 - t/RC$ understand and use the terms magnetic flux density B, flux ϕ and flux	
120.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_{0}e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit, $I = I_0 e^{-t/RC}$, and $V = V_0 e^{-t/RC}$ and the corresponding log equations $In Q = Q_0 - t/RC$, $In I = In I_0 - t/RC$ and $In V_0 - t/RC$ understand and use the terms magnetic flux density B, flux ϕ and flux linkage N ϕ	
120. 121. 122.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_0 e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit, $I = I_0 e^{-t/RC}$, and $V = V_0 e^{-t/RC}$ and the corresponding log equations $In Q = Q_0 - t/RC$, $In I = In I_0 - t/RC$ and $In V_0 - t/RC$ understand and use the terms magnetic flux density B, flux ϕ and flux linkage N ϕ be able to use the equation F = Bqv sin θ and apply Fleming's left-hand	
120. 121. 122.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_{0}e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit, $I = l_0 e^{-t/RC}$, and $V = V_0 e^{-t/RC}$ and the corresponding log equations $ln Q = Q_0 - t/RC$, $ln I = ln l_0 - t/RC$ and $ln V_0 - t/RC$ understand and use the terms magnetic flux density B, flux ϕ and flux linkage N ϕ be able to use the equation F = Bqv sin θ and apply Fleming's left-hand rule to charged particles moving in a magnetic field	
120. 121. 122. 123.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_{0}e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit, $I = I_0 e^{-t/RC}$, and $V = V_0 e^{-t/RC}$ and the corresponding log equations $In Q = Q_0 - t/RC$, $In I = In I_0 - t/RC$ and $In V_0 - t/RC$ understand and use the terms magnetic flux density B, flux ϕ and flux linkage N ϕ be able to use the equation F = Bqv sin θ and apply Fleming's left-hand rule to charged particles moving in a magnetic field be able to use the equation F = BII sin θ and apply Fleming's left-hand rule	
120. 121. 122. 123.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_{0}e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit, $I = I_0 e^{-t/RC}$, and $V = V_0 e^{-t/RC}$ and the corresponding log equations $\ln Q = Q_0 - t/RC$, $\ln I = \ln I_0 - t/RC$ and $\ln V_0 - t/RC$ understand and use the terms magnetic flux density B, flux ϕ and flux linkage N ϕ be able to use the equation $F = Bqv \sin\theta$ and apply Fleming's left-hand rule to charged particles moving in a magnetic field be able to use the equation $F = BII \sin\theta$ and apply Fleming's left-hand rule to current carrying conductors in a magnetic field	
120. 121. 122. 123. 124.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_{0}e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit, $I = b e^{-t/RC}$, and $V = V_0 e^{-t/RC}$ and the corresponding log equations $\ln Q = Q_0 - t/RC$, $\ln I = \ln b_0 - t/RC$ and $\ln V_0 - t/RC$ understand and use the terms magnetic flux density B, flux ϕ and flux linkage N ϕ be able to use the equation $F = Bqv \sin\theta$ and apply Fleming's left-hand rule to charged particles moving in a magnetic field be able to use the equation $F = BII \sin\theta$ and apply Fleming's left-hand rule to current carrying conductors in a magnetic field understand the factors affecting the e.m.f. induced in a coil when there is	
120. 121. 122. 123. 124.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_{0}e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit, $I = I_0 e^{-t/RC}$, and $V = V_0 e^{-t/RC}$ and the corresponding log equations $\ln Q = Q_0 - t/RC$, $\ln I = \ln I_0 - t/RC$ and $\ln V_0 - t/RC$ understand and use the terms magnetic flux density B, flux ϕ and flux linkage N ϕ be able to use the equation F = Bqv sin θ and apply Fleming's left-hand rule to charged particles moving in a magnetic field be able to use the equation F = BII sin θ and apply Fleming's left-hand rule to current carrying conductors in a magnetic field understand the factors affecting the e.m.f. induced in a coil when there is relative motion between the coil and a permanent magnet	
120. 121. 122. 123. 124. 125.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_{0}e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit, $I = I_0 e^{-t/RC}$, and $V = V_0 e^{-t/RC}$ and the corresponding log equations $In Q = Q_0 - t/RC$, $In I = In I_0 - t/RC$ and $In V_0 - t/RC$ understand and use the terms magnetic flux density B, flux ϕ and flux linkage N ϕ be able to use the equation F = Bqv sin θ and apply Fleming's left-hand rule to charged particles moving in a magnetic field be able to use the equation F = BII sin θ and apply Fleming's left-hand rule to current carrying conductors in a magnetic field understand the factors affecting the e.m.f. induced in a coil when there is relative motion between the coil and a permanent magnet understand the factors affecting the e.m.f. induced in a coil when there is a change of current in another coil linked with this coil	
120. 121. 122. 123. 124. 125.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_{0}e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit, $I = I_0 e^{-t/RC}$, and $V = V_0 e^{-t/RC}$ and the corresponding log equations $In Q = Q_0 - t/RC$, $In I = In I_0 - t/RC$ and $In V_0 - t/RC$ understand and use the terms magnetic flux density B, flux ϕ and flux linkage N ϕ be able to use the equation F = Bqv sin θ and apply Fleming's left-hand rule to charged particles moving in a magnetic field be able to use the equation F = BII sin θ and apply Fleming's left-hand rule to current carrying conductors in a magnetic field understand the factors affecting the e.m.f. induced in a coil when there is relative motion between the coil and a permanent magnet understand the factors affecting the e.m.f. induced in a coil when there is a change of current in another coil linked with this coil understand how to use Lenz's law to predict the direction of an induced	
120. 121. 122. 123. 124. 125. 126.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_{0}e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit, $I = l_0 e^{-t/RC}$, and $V = V_0 e^{-t/RC}$ and the corresponding log equations $ln Q = Q_0 - t/RC$, $ln I = ln l_0 - t/RC$ and $ln V_0 - t/RC$ understand and use the terms magnetic flux density B, flux ϕ and flux linkage N ϕ be able to use the equation F = Bqv sin θ and apply Fleming's left-hand rule to charged particles moving in a magnetic field be able to use the equation F = Bll sin θ and apply Fleming's left-hand rule to current carrying conductors in a magnetic field understand the factors affecting the e.m.f. induced in a coil when there is relative motion between the coil and a permanent magnet understand the factors affecting the e.m.f. induced in a coil when there is a change of current in another coil linked with this coil understand how to use Lenz's law to predict the direction of an induced e m f. and how the prediction relates to energy conservation	
120. 121. 122. 123. 124. 125. 126.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_{0}e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit, $I = b e^{-t/RC}$, and $V = V_0 e^{-t/RC}$ and the corresponding log equations $\ln Q = Q_0 - t/RC$, $\ln I = \ln b - t/RC$ and $\ln V_0 - t/RC$ understand and use the terms magnetic flux density B, flux ϕ and flux linkage N ϕ be able to use the equation F = Bqv sin θ and apply Fleming's left-hand rule to charged particles moving in a magnetic field be able to use the equation F = Bll sin θ and apply Fleming's left-hand rule to current carrying conductors in a magnetic field understand the factors affecting the e.m.f. induced in a coil when there is relative motion between the coil and a permanent magnet understand the factors affecting the e.m.f. induced in a coil when there is a change of current in another coil linked with this coil understand how to use Lenz's law to predict the direction of an induced e.m.f., and how the prediction relates to energy conservation understand how to use Faraday's law to determine the magnitude of an	
120. 121. 122. 123. 124. 125. 126. 127.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_{0}e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit, $I = I_0 e^{-t/RC}$, and $V = V_0 e^{-t/RC}$ and the corresponding log equations $\ln Q = Q_0 - t/RC$, $\ln I = \ln I_0 - t/RC$ and $\ln V_0 - t/RC$ understand and use the terms magnetic flux density B, flux ϕ and flux linkage N ϕ be able to use the equation F = Bqv sin θ and apply Fleming's left-hand rule to charged particles moving in a magnetic field be able to use the equation F = BII sin θ and apply Fleming's left-hand rule to current carrying conductors in a magnetic field understand the factors affecting the e.m.f. induced in a coil when there is relative motion between the coil and a permanent magnet understand the factors affecting the e.m.f. induced in a coil when there is a change of current in another coil linked with this coil understand how to use Lenz's law to predict the direction of an induced e.m.f., and how the prediction relates to energy conservation understand how to use Faraday's law to determine the magnitude of an induced e.m.f. and be able to use the equation that combines Faraday's	
120. 121. 122. 123. 124. 125. 126. 127.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_{0}e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit, $I = b e^{-t/RC}$, and $V = V_0 e^{-t/RC}$ and the corresponding log equations $\ln Q = Q_0 - t/RC$, $\ln I = \ln b - t/RC$ and $\ln V_0 - t/RC$ understand and use the terms magnetic flux density B, flux ϕ and flux linkage N ϕ be able to use the equation $F = Bqv \sin\theta$ and apply Fleming's left-hand rule to charged particles moving in a magnetic field be able to use the equation $F = Bll \sin\theta$ and apply Fleming's left-hand rule to current carrying conductors in a magnetic field understand the factors affecting the e.m.f. induced in a coil when there is relative motion between the coil and a permanent magnet understand the factors affecting the e.m.f. induced in a coil when there is a change of current in another coil linked with this coil understand how to use Lenz's law to predict the direction of an induced e.m.f., and how the prediction relates to energy conservation understand how to use Faraday's law to determine the magnitude of an induced e.m.f. and be able to use the equation that combines Faraday's and Lenz's laws E = -d(N ϕ) / dt	
120. 121. 122. 123. 124. 125. 126. 127. 128.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_{0}e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit, $I = I_0 e^{-t/RC}$, and $V = V_0 e^{-t/RC}$ and the corresponding log equations $\ln Q = Q_0 - t/RC$, $\ln I = \ln I_0 - t/RC$ and $\ln V_0 - t/RC$ understand and use the terms magnetic flux density B, flux ϕ and flux linkage N ϕ be able to use the equation $F = Bqv \sin\theta$ and apply Fleming's left-hand rule to charged particles moving in a magnetic field be able to use the equation $F = BII \sin\theta$ and apply Fleming's left-hand rule to current carrying conductors in a magnetic field understand the factors affecting the e.m.f. induced in a coil when there is relative motion between the coil and a permanent magnet understand the factors affecting the e.m.f. induced in a coil when there is a change of current in another coil linked with this coil understand how to use Lenz's law to predict the direction of an induced e.m.f., and how the prediction relates to energy conservation understand how to use Faraday's law to determine the magnitude of an induced e.m.f. and be able to use the equation that combines Faraday's and Lenz's laws $E = -d(N\phi) / dt$ understand what is meant by the terms frequency. period, peak value and	
120. 121. 122. 123. 124. 125. 126. 127. 128.	and analyse the potential difference (p.d.) across a capacitor as it charges and discharges through a resistor. be able to use the equation $Q = Q_{0}e^{-t/RC}$ and derive and use related equations for exponential discharge in a resistor-capacitor circuit, $I = b e^{-t/RC}$, and $V = V_0 e^{-t/RC}$ and the corresponding log equations $\ln Q = Q_0 - t/RC$, $\ln I = \ln b - t/RC$ and $\ln V_0 - t/RC$ understand and use the terms magnetic flux density B, flux ϕ and flux linkage N ϕ be able to use the equation F = Bqv sin θ and apply Fleming's left-hand rule to charged particles moving in a magnetic field be able to use the equation F = Bll sin θ and apply Fleming's left-hand rule to current carrying conductors in a magnetic field understand the factors affecting the e.m.f. induced in a coil when there is relative motion between the coil and a permanent magnet understand the factors affecting the e.m.f. induced in a coil when there is a change of current in another coil linked with this coil understand how to use Lenz's law to predict the direction of an induced e.m.f., and how the prediction relates to energy conservation understand how to use Faraday's law to determine the magnitude of an induced e.m.f. and be able to use the equation that combines Faraday's and Lenz's laws E = -d(N ϕ) / dt understand what is meant by the terms frequency, period, peak value and rootmean-square value when applied to alternating currents and potential	

129.	be able to use the equations Vrms = V0 / $\sqrt{2}$ and Irms = I0 / $\sqrt{2}$	
------	--	--

Topic 8 Nuclear and Particle Physics A2

130.	understand what is meant by nucleon number (mass number) and proton number (atomic number)	
131.	understand how large-angle alpha particle scattering gives evidence for a nuclear model of the atom and how our understanding of atomic structure has changed over time	
132.	understand that electrons are released in the process of thermionic emission and how they can be accelerated by electric and magnetic fields	
133.	understand the role of electric and magnetic fields in particle accelerators (linac and cyclotron) and detectors (general principles of ionisation and deflection only)	
134.	be able to derive and use the equation $r = p/BQ$ for a charged particle in a magnetic field	
135.	be able to apply conservation of charge, energy and momentum to interactions between particles and interpret particle tracks	
136.	understand why high energies are required to investigate the structure of nucleons	
137.	be able to use the equation $\Delta E = c^2 \Delta m$ in situations involving the creation and annihilation of matter and antimatter particles	
138.	be able to use MeV and GeV (energy) and MeV/c ² , GeV/c ² (mass) and convert between these and SI units	
139.	understand situations in which the relativistic increase in particle lifetime is significant (use of relativistic equations not required)	
140.	 know that in the standard quark-lepton model particles can be classified as: baryons (e.g. neutrons and protons) which are made from three quarks mesons (e.g. pions) which are made from a quark and an antiquark leptons (e.g. electrons and neutrinos) which are fundamental particles photons and that the symmetry of the model predicted the top quark 	
141.	know that every particle has a corresponding antiparticle and be able to use the properties of a particle to deduce the properties of its antiparticle and vice versa	
142.	understand how to use laws of conservation of charge, baryon number and lepton number to determine whether a particle interaction is possible	
143.	be able to write and interpret particle equations given the relevant particle symbols.	

Topic 9 Thermodynamics A2

144.	Be able to use the equations $\Delta E = m c \Delta \theta$ and $\Delta E = L \Delta m$	
145.	CORE PRACTICAL 12: Calibrate a thermistor in a potential divider	
	circuit as a thermostat.	
146.	CORE PRACTICAL 13: Determine the specific latent heat of a phase	
	change.	
147.	understand the concept of internal energy as the random distribution of	
	potential and kinetic energy amongst molecules	
148.	understand the concept of absolute zero and how the average kinetic	
	energy of molecules is related to the absolute temperature	

149.	be able to derive and use the equation $pV = 1/3$ N m <c<sup>2>using the kinetic theory model</c<sup>	
150.	be able to use the equation $pV = NkT$ for an ideal gas	
151.	CORE PRACTICAL 14: Investigate the relationship between pressure and volume of a gas at fixed temperature.	
152.	be able to derive and use the equation $\frac{1}{2}$ m <c<sup>2> = $\frac{3}{2}$ k T</c<sup>	
153.	understand what is meant by a black body radiator and be able to interpret radiation curves for such a radiator	
154.	be able to use the Stefan-Boltzmann law equation $L = \sigma AT^4$ for black body radiators	
155.	be able to use Wien's law equation $\lambda_{max}T = 2.90 \times 10^{-3} \text{ m K}$ for black body radiators.	

Topic 10 Space A2

156.	be able to use the equation, intensity $I = L / 4\pi d^2$ where L is luminosity	
	and d is distance from the source	
157.	understand how astronomical distances can be determined using	
	trigonometric parallax	
158.	understand how astronomical distances can be determined using	
	measurements of intensity received from standard candles (objects of	
	known luminosity)	
159.	be able to sketch and interpret a simple Hertzsprung-Russell diagram that	
	relates stellar luminosity to surface temperature	
160.	understand how to relate the Hertzsprung-Russell diagram to the life	
	cycle of stars	
161.	understand how the movement of a source of waves relative to an	
	observer/detector gives rise to a shift in frequency (Doppler effect)	
162.	be able to use the equations for redshift $\Delta\lambda / \lambda \approx \Delta f / f \approx v/c$ for a source	
	of electromagnetic radiation moving relative to an observer and $v = H_0 d$	
	for objects at cosmological distances	
163.	understand the controversy over the age and ultimate fate of the universe	
	associated with the value of the Hubble constant and the possible	
	existence of dark matter.	

Topic 11 Nuclear Radiation A2

164.	understand the concept of nuclear binding energy and be able to use the equation $\Delta E = c^2 \Delta m$ in calculations of nuclear mass (including mass deficit) and energy	
165.	use the atomic mass unit (u) to express small masses and convert between this and SI units	
166.	understand the processes of nuclear fusion and fission with reference to the binding energy per nucleon curve	
167.	understand the mechanism of nuclear fusion and the need for very high densities of matter and very high temperatures to bring about and maintain nuclear fusion	
168.	understand that there is background radiation and how to take appropriate account of it in calculations	
169.	understand the relationships between the nature, penetration, ionising ability and range in different materials of nuclear radiations (alpha, beta and gamma)	
170.	be able to write and interpret nuclear equations given the relevant particle symbols	

171.	CORE PRACTICAL 15: Investigate the absorption of gamma radiation by lead.	
172.	understand the spontaneous and random nature of nuclear decay	
173.	be able to determine the half-lives of radioactive isotopes graphically and be able to use the equations for radioactive decay: activity $A = dN / dt = \lambda N$, $\lambda = ln2 / t_{1/2}$, $N = N_0 e^{-\lambda t}$ and $A = A_0 e^{-\lambda t}$ and derive and use the corresponding log equations.	

Topic 12 Gravitational Fields A2

174.	understand that a gravitational field (force field) is defined as a region	
	where a mass experiences a force	
175.	understand that gravitational field strength is defined as g = F / m and be	
	able to use this equation	
176.	be able to use the equation $F = G m_1 m_2 / r^2$ (Newton's law of universal	
	gravitation)	
177.	be able to derive and use the equation $g = G m / r^2$ for the gravitational	
	field due to a point mass	
178.	be able to use the equation $v_{grav} = -GWr^2$ for a radial gravitational field	
179.	be able to compare electric fields with gravitational fields	
180.	be able to apply Newton's laws of motion and universal gravitation to	
	orbital motion.	

Topic 13 Oscillations A2

understand that the condition for simple harmonic motion is $F = -kx$, and	
hence understand how to identify situations in which simple harmonic	
motion will occur	
be able to use the equations $a = -\omega^2 x$, $x = A\cos \omega t$, $v = -A\omega \sin \omega t$,	
a = $-A \omega^2 \cos \omega t$, and T = $1/f = 2\pi / \omega$ and $\omega = 2\pi f$ as applied to a	
simple harmonic oscillator	
be able to use equations for a simple harmonic oscillator	
$T=2\pi\;\sqrt{m/k}$, and a simple pendulum $\;T=2\pi\;\sqrt{l/g}\;$	
be able to draw and interpret a displacement-time graph for an object	
oscillating and know that the gradient at a point gives the velocity at that	
point	
be able to draw and interpret a velocity-time graph for an oscillating	
object and know that the gradient at a point gives the acceleration at that	
point	
understand what is meant by resonance	
CORE PRACTICAL 16: Determine the value of an unknown mass	
using the resonant frequencies of the oscillation of known masses.	
understand how to apply conservation of energy to damped and	
undamped oscillating systems	
understand the distinction between free and forced oscillations	
understand how the amplitude of a forced oscillation changes at and	
around the natural frequency of a system and know, qualitatively, how	
damping affects resonance	
	understand that the condition for simple harmonic motion is $F = -kx$, and hence understand how to identify situations in which simple harmonic motion will occur be able to use the equations $a = -\omega^2 x$, $x = A\cos \omega t$, $v = -A \omega \sin \omega t$, $a = -A \omega^2 \cos \omega t$, and $T = 1/f = 2\pi / \omega$ and $\omega = 2\pi f$ as applied to a simple harmonic oscillator be able to use equations for a simple harmonic oscillator $T = 2\pi \sqrt{m/k}$, and a simple pendulum $T = 2\pi \sqrt{l/g}$ be able to draw and interpret a displacement–time graph for an object oscillating and know that the gradient at a point gives the velocity at that point be able to draw and interpret a velocity–time graph for an oscillating object and know that the gradient at a point gives the acceleration at that point understand what is meant by resonance CORE PRACTICAL 16: Determine the value of an unknown masses. understand how to apply conservation of energy to damped and undamped oscillating systems understand how the amplitude of a forced oscillations understand how the amplitude of a forced oscillation, how around the natural frequency of a system and know, qualitatively, how damping affects resonance

191.	understand how damping and the plastic deformation of ductile materials	
	reduce the amplitude of oscillation.	

Core Practicals

1	Determine the acceleration of a freely-falling object.	
2	Determine the electrical resistivity of a material.	
3	Determine the e.m.f. and internal resistance of an electrical cell.	
4	Use a falling-ball method to determine the viscosity of a liquid.	
5	Determine the Young modulus of a material	
6	Determine the speed of sound in air using a 2-beam oscilloscope, signal	
	generator, speaker and microphone.	
7	Investigate the effects of length, tension and mass per unit length on the	
	frequency of a vibrating string or wire.	
8	Determine the wavelength of light from a laser or other light source using	
	a diffraction grating.	
9	Investigate the relationship between the force exerted on an object and	
	its change of momentum.	
10	Use ICT to analyse collisions between small spheres, e.g. ball bearings	
	on a table top.	
11	Use an oscilloscope or data logger to display and analyse the potential	
	difference (p.d.) across a capacitor as it charges and discharges through	
	a resistor.	
12	Calibrate a thermistor in a potential divider circuit as a thermostat.	
13	Determine the specific latent heat of a phase change.	
14	Investigate the relationship between pressure and volume of a gas at	
	fixed temperature.	
15	Investigate the absorption of gamma radiation by lead.	
16	Determine the value of an unknown mass using the resonant	
	frequencies of the oscillation of known masses.	

Mechanics:

Kinematic equations of motions = (u + v)t / 2s = displacement (vector)v = u + atv = final velocity $s = ut + \frac{1}{2}at^2$ u = initial velocity $v^2 = u^2 + 2as$ a = accelerationt = timeForces

ΣF = m a	m = mass
g = F / m	g = gravitational field strength
w = m g	w = weight
Moment of force = F x	F = force
	x = distance (scalar)

Momentum

p = m v

p = momentum

Work, energy and power $\Delta W = F \Delta s$ $\Delta W = work done$ $E_k = \frac{1}{2} m v^2$ $E_k = kinetic energy$ $\Delta E_{grav} = m g \Delta h$ $\Delta E_{grav} = gravitational potential energy$ h = heightP = powerP = W / tE = energyW = work done

efficiency = useful energy output / total energy input

efficiency = useful power output / total power input

Potential difference			
V = W / Q	W = work done		
	Q = charge		
Resistance			
R = V / I	R = resistance		
Electrical power, energy and efficiency			
P = V I	P = power		
$P = I^2 R$	I = current		
$P = V^2 / R$	V = voltage		
W = V I t	W = work done		
Resistivity			
$R = \rho I / A$	ρ = resistivity		
	R = resistance		
	I = length		
	A = x-sectional area		
Current			
$I = \Delta Q / \Delta t$	Q = charge		
I = n q <i>v</i> A	n = number of charge carriers m ⁻³ q = charge on carrier v = drift velocity		
	A = cross-sectional area		

Ma	ter	ial	s:

ρ = density
m = mass
V = volume
n – viscocity
r = radius of the sphere
v = velocity
v = velocity
k = spring constant
x = extension
p = pressure
F = force
A = x-sectional area
$\Delta x = extension$
x = original length
E _{at} = elastic strain energy

Waves

Wave speed $v = f \lambda$ v = velocity of wave Speed of a transverse wave on a spring $v = \sqrt{T} / \sqrt{\mu}$ T = tension μ = mass per unit length Intensity of radiation I = P / AI = intensity Power of a lens P = 1 / fP = power *f* = focal length $P = P_1 + P_2 + P_3 + \dots$ Thin lens equation 1/u + 1/v = 1/fu = object distance v = image distance Magnification for a lens magnification = Image height / Object height m = v / u**Diffraction grating** $n \lambda = d \sin \theta$ λ = wavelength **Refractive index** $n_1 \sin\theta_1 = n_2 \sin\theta_2$ n = refractive index n = c / vc = speed of EM radiation in a vacuum Critical angle sinC = 1 / nPhoton model E = hfh = Planck's constant f = frequency Einstein's photoelectric Equation $hf = \phi + \frac{1}{2} mv_{max}^2$ ϕ = work function $\frac{1}{2} mv_{max}^2 = kinetic energy$ de Broglie wavelength $\lambda = h / p$ λ = wavelength p = momentum

The value of the following constants will be provided in each examination paper.

Acceleration of free fall	$g = 9.81 \text{ m s}^{-2}$	(close to Earth's surface)	
Boltzmann constant	k = 1.38 \times 10 $^{-23}$ J K^{-1}		
Coulomb law constant	k = 4 1 πεο = 8.99 x 109 N m ² C ⁻²		
Electron charge	$e = -1.60 \times 10^{-19} C$		
Electron mass	$m_e = 9.11 \times 10^{-31} \text{ kg}$		
Electronvolt	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$		
Gravitational constant	G = $6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$		
Gravitational field strength	g = 9.81 N kg ⁻¹	(close to Earth's surface)	
Planck constant	h = $6.63 \times 10^{-34} \text{J s}$		
Permittivity of free space	ϵ_{o} = 8.85 \times 10 $^{-12}$ F m–1		
Proton mass	m_p = 1.67 × 10 ⁻²⁷ kg		
Speed of light in a vacuum	c = $3.00 \times 108 \text{ m s}^{-1}$		
Stefan-Boltzmann constant	σ = 5.67 x 10-8 W m ⁻²	K ⁻⁴	
Unified atomic mass unit	u = 1.66 x 10 ⁻²⁷ kg		