

Mark Scheme (Standardisation) Summer 2007

GCE

GCE Physics (6733/01)

6733 Unit Test PHY3 (Topics) June 2007 Topic A - Astrophysics

(a)	Intensity and Luminosity		
	Luminosity = power [or energy / time, accept "per second"]	✓	
	Intensity = power (or energy / time) [e.c.f. from first mark] per unit area [accept per square metre]	✓	
	Luminosity: measured at star OR Intensity: measured at Earth / depends on distance (from star) / observed OR W with W m ⁻² OR $I = L \div 4 \pi D^2$	✓	3
(b)	Wavelength of Sun		
(i)	Use of Wien's law [accept any attempted use]	✓	
	$5.0 \times 10^{-7} \text{ m}$	✓	2
(ii)	Surface area of Sun		
	Use of 4 πr^2	✓	
	$6.1 \times 10^{18} (\text{m}^2)$	✓	2
(iii)	<u>Luminosity of Sun</u>		
	$L = \sigma A T^4 [\text{or } L = \sigma T^4 4 \pi r^2]$	✓	
	Correct substitution [e.c.f.]	✓	
	$3.9 \times 10^{26} \text{ W [accept } 3.8 \text{ or } 3.84 \times 10^{26} \text{ W from } 6 \times 10^{18} \text{ m}^2]$	✓	3
(c)	Main sequence mass requirement		
	Quality of written communication	✓	
	(Main sequence requires) <u>hydrogen</u> fusion / burning	✓	
	Mass linked to gravitational forces / field [/energy]	✓	
	High forces [or temperature, pressure] required for fusion / burning / m.s.	✓	4
(d)	Hertzsprung-Russell diagram		
(i)	Axes change in (fixed) multiples [accept exponential changes]	✓	
	x-axis multiple: x ½ OR x 2	✓	2
(ii)	L on diagonal falling line in lower right quadrant	✓	
	W indicated mostly in lower left quadrant	✓	
	R indicated mostly in upper right quadrant [not on main sequence]	✓	
	S in line with 10^0 [± 2 mm to centre of S, to left of 5000 K. on m.s.]	✓	4

(e) <u>Parallax analogy</u>

(i)	5 tan 84^0 [beware 5 / $\cos 84^0 = 47.8 \text{ m}$]	✓	
	47.6 m	✓	2
(ii)	2 AU / Earth orbital radius x 2 / Earth orbital diameter / distance between Earth at a six month interval / 3×10^{11} m	✓	1
(iii)	Inaccurate readings / difficult to measure AND small angles / movement relative to background (stars)	✓	1
(f)	Black hole radius		
(i)	Correct substitution / 8.93 x 10 ⁻³ (m)	✓	
	R doubled OR 2 cm halved	✓	
	0.018 m OR 1.8 (cm) [accept 2 cm / 0.02 m from previously rounding]	✓	3
(ii)	Supernova	✓	1
	Mass of black hole		
(iii)	$2.5~M_{\odot}$	✓	1
(iv)	Substitution [allow $R = 26.8$]	✓	
	$1.8 \times 10^{31} (kg)$	✓	
	9 (M_{\odot}) [no e.c.f.]	✓	3

TOTAL

32

Topic B - Solid Materials

(a)	Elastic and Plastic behaviour		
	Plastic = permanent AND elastic = reversible [may be implied anywhere]	✓	
	Elastic: bonds stretch but not broken / atoms move apart but then return	✓	
	Plastic: bonds broken (when stressed) / atoms do not return to original position (after stress)	✓	3
(b)	<u>Ultimate Tensile Strength</u>		
(i)	$(3.6 - 3.7) \times 10^8 \text{ N m}^{-2} / \text{Pa}$	✓	1
	Energy density estimate		
(ii)	Energy density = area [may be implied by working]	✓	
	Attempt at area [ignore 10^8 and 10^{-3}] (rectangle (and triangle) or counting squares)	✓	
	Range: $600 \text{ kJ m}^{-3} - 700 \text{ kJ m}^{-3} [\text{accept N m}^{-2}]$	✓	3
	Young modulus calculation		
(iii)	Attempt at gradient / stress \div strain [ignore 10^n]	✓	
	Valid pair of readings taken from graph [10 ⁸ and 10 ⁻³ required]	✓	
	$8.0 \text{ to } 9.0 \text{ x } 10^{11} \text{ N m}^{-2} / \text{Pa}$	✓	3
	Tough or brittle explanation		
(iv)	Tough	✓	
	Any reference to <u>plastic</u> behaviour	✓	
	(Large area under) non-linear part of graph referred to	✓	3
(c)	<u>Definitions</u>		
(i)	Stress = force \div area AND strain = extension \div <u>original</u> [initial] length	✓	1
(ii)	$E = stress \div strain [accept symbols here]$	✓	
	$E = \frac{F/A}{N/I}$	✓	2
	Radius "show that" calculation		
(iii)	Correct substitution in $E = \frac{Fl}{A\Delta l} / A = 2.7 \times 10^{-7} \text{ (m}^2\text{)}$	✓	
	$A = \pi r^2$	✓	
	$2.9 \times 10^{-4} \text{ m} / 0.29 \text{ (mm)}$	✓	3

(d) Golf ball rubber

(i)	Quality of written communication	✓	
	(Can absorb energy) elastically / elastic behaviour / not plastic	✓	
	Can release energy with high efficiency / greater transfer of energy (from club to ball) / small hysteresis loop	✓	
	Can withstand (very) large forces [or stress] / durable / elastomer	✓	4
	Hysteresis graph for rubber		
(ii)	Correct shape: steep-flatter-steep, and reverse	✓	
	Labels [one labelled curve scores 1/2]	✓	2
	Area difference explanation		
(iii)	Reference to area / difference in two areas	✓	
	Loop area linked to gain / internal energy / heat by rubber	✓	2
(e)	Steel tension members on boat		
(i)	$T_f \cos 30^0 / 4 \cos 30^0 / T_r \cos 45^0 / 2.8 \cos 45^0$	✓	
	$5.4 \times 10^3 \mathrm{N}$	✓	2
	Moments calculation		
(ii)	Attempt at moments / moment = Force x (perpendicular) distance from P	✓	
	$\sin 45^{0} / \sin 30^{0}$ multipliers used anywhere [accept $\cos 45^{0}$ AND $\cos 60^{0}$]	✓	
	Both shown to be 10 (kN m) OR subtract moments to zero	✓	3
		TOTAL	32

Topic C - Nuclear and Particle Physics

(a) Strong and weak interaction differences Strong affects quarks (only) AND Week

Strong affects <u>quarks</u> (only) AND Weak affects any particle

✓

Both exchange particles: gluon, either W or Z

✓

Any two from:

 W^+ , W^- and Z

strength (S $\approx 10^5$ W for touching protons) [accept S>>W] range (S $\approx 10^{-15}$ m, W $\approx 10^{-18}$ m) [accept S>W]

range (S $\approx 10^{-13}$ m, W $\approx 10^{-16}$ m) [accept S>W mass (S = 0, W ≈ 89 u) [accept W>S]

Any 2

Only W can change (quark) flavour / W involve in β -decay

3

4

1

(b) Alpha particle radius

(i)
$$A = 4$$

 \checkmark

Use of $r = r_0 A^{1/3}$ [accept substitution if correctly written]

 1.9×10^{-15} (m) [beware 1.6×10^{-15} m]

/

(ii) Alpha particle density

use of
$$\rho = m \div V$$

✓

$$m = 4 \times 1.66 \times 10^{-27} \text{ (kg)} / 6.64 \times 10^{-27} \text{ (kg)} \text{ [accept u as } 1.7 \times 10^{-27} \text{]}$$

✓

$$4/3~\pi \left(1.9~x~10^{\text{-}15}~m\right)^3/\left.2.9~x~10^{\text{-}44}~m^3~[e.c.f.~only~to~1.6~x~10^{\text{-}15}~m\right]$$

 $2.3 \times 10^{17} \text{ kg m}^{-3}$ (allow $2 \times 10^{17} \text{ kg m}^{-3}$ but not $1.98 \times 10^{17} \text{ kg m}^{-3}$ [sf])

Single line / narrow peak only

(c) Carbon – 14 formation

$$^{14}_{~7}N~+~^{0}_{~-1}~\beta~\rightarrow~^{14}_{~6}C~+~\nu_{e}$$

(i) N, β , C and ν_e in correct equation [accept e or β]

✓

Correct nucleon numbers: 14, 0, 14

✓

Correct proton numbers 7, -1, 6 [all A and Z interchanged scores 1/2]

✓

(ii) Proton turns into a neutron / up to down / uud to udd [ignore leptons]

.

3 1

(iii) Initial activity calculation

(almost) two half lives / 11460 years (is almost 12 000 years) / 2.09

4800 / 5000 (Bq) [or $2^{2.09}$ or exponential equation route = 5124 Bq]

2

(d) Pair production explanation

Quality of written communication

Photon / gamma (ray) initially [not photons, accept Z⁰]

Converted into particle and antiparticle / matter and antimatter

Two examples: e^+ , e^-/p , p/v, v/q, q/etc. [not "anti-electron"]

(e) Hadron definition

(i) (Particle) composed of quarks

1

(ii) Quark flavours

Charm, strange, top [any order]

All three in correct position: c... t...

2

(iii) Baryon charge permutations

Baryon = qqq [may be implied]

+2, +1, 0, -1 [accept 2, 1, 0, -1]

, +1, 0, -1 [accept 2, 1, 0, -1]

Addition shown four times $(+\frac{2}{3} + \frac{2}{3} + \frac{2}{3} = +2$, etc.)

[Only three additions scores max ✓✓x]

*-*2 ✓ 1

(iv) Pion compositions

$$\pi^+ = u\overline{d}$$

 $\pi^- = d\overline{u}$

 $\pi^0 = u\bar{u} \text{ and } d\bar{d}$

TOTAL 32

Topic D - Medical Physics

Ultrasound and X-ray imaging (a) Labelled diagram with transducer (source and detector) touching patient Labelled diagram with X-ray source : (patient) : film Any two pairs from: Ultrasound AND X-rays (high frequency) longitudinal (high energy) electromagnetic / sound / mechanical waves transverse waves / photons Coupling medium needed (tube) not in contact with patient Reflection (at interface) Attenuation / absorption No ionisation / radiation risk Ionisation / radiation dose Limited resolution / detail Better resolution Specific acoustic impedance Proton number dependence Soft tissue imaging / Doppler Bones usually imaged Max 4 (b) Molybdenum $^{99}_{42}$ Mo $\rightarrow ^{99m}_{43}$ Tc + $^{0}_{-1}$ β [accept e or β with all six values, ignore neutrinos] 1 (i) (ii) 1 Neutron irradiation / bombardment OR (uranium) fission Gamma radiation advantages (iii) (Half-life of 6 h) – neither too long (damage to patient) not too short (sufficient for study to take place) Lowest ionisation / no α or β , so less damage / safer (to cells / patient) Can be **detected** outside body / by gamma camera 3 X-rays in diagnosis and therapy 1 (i) Diagnosis: imaging / examining patient AND therapy: treatment Diagnosis: (60 – 150) keV [values not required, allow 1 - 999] (ii) Therapy: (4 - 25) MeV [values not required, allow 1 - 999] 2 (iii) Diagnosis: depends on Z; Therapy: **no** Z dependence 1 (iv) Quality of written communication Rotating or multiple beams / alignment devices clearly shown in diagram Tumour always targeted [may be in diagram]

4

Surrounding tissue only sometimes receives radiation

(d)	Ultrasound m	nedium	pro	perties

- (i) Use of $Z = \rho \times c$
 - $A = 1570 \text{ (m s}^{-1})$
 - $B = 1026 / 1030 \text{ (kg m}^{-3)}$

Reflection coefficient calculation

- (ii) $(1.70 1.38)^2 \div (1.70 + 1.38)^2$
 - 0.011 / 1.08% / 1.1%
 - 98.9% / 100% their value (ecf) / statement 1% reflected, 99% transmitted ✓ 3

(e) Half-life definition

- (i) Time taken for activity (of radionuclide) to half due to excretion (from body or organ) OR time for body to excrete half of sample [accept "get rid of..."]
- (ii) Effective half-life calculation
 - $1/t_{\rm e} = 1/13 + 1/11$
 - 5.96 (h) / 6.0 h [accept 5.95h, but not 5.8h nor 5.9h] ✓ 2
- (iii) Half-life plot
 - Smooth, falling, concave curve, not touching x-axis, to 12 h
 - Starting at (0,1000) ✓

Radioisotope Y effective half-life

- (iv) 4 h ✓ 1
- (v) Curve through (0,2000), (4,1000) AND (8,500) ✓ 1
- (vi) 12 h ✓

TOTAL 32

1